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For the first time Hlavaty represented the tensor *g**, defined by (15a), in terms
of the unified field tensor gy, in the space-time X,. Recently, the representations
of *g*’ in terms of &y in two- and three-dimensional generalized Riemannian
space were obtained by Chung. The purpose of the present paper is to obtain the
generalized representations of *g?* in terms of g, . 1n 2 generalized n-dimensional
Riemannian space X,,.

1. INTRODUCTION

The tensor *g* defined by (15) is very useful, particularly for the study
of Einstein’s unified field theory to physical applications. For the first time
Hlavaty represented the tensor *g*?, defined by (15a), in terms of the
unified field tensor g,, in the space-time X, (Hlavaty, 1957). The represen-
tations of *g*” in terms of 8, In two- and three-dimensional generalized
Riemannian space were obtained recently by Chung (1979). The purpose of
the present paper is to obtain the generalized representations of *g*” in
terms of g,, in a generalized n-dimensional Riemannian space X,. The
obtained results and discussions in the present paper will be useful for the
n-dimensional considerations of *g**-unified field theory.

2. PRELIMINARY RESULTS

This section is a collection of notations and basic results which will be
needed in our subsequent considerations. The detailed proofs are given in
Chung (1975).
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In the usuval Einstein’s n-dimensional unified field theory, the gener-
alized n-dimensional Riemannian space X, refers to a real coordinate
transformation x*— x*, for which

0X '
Det{ —— | #0 1
(55)* (1)

and is endowed with a real nonsymmetric tensor g, ,, which may be split into
its symmetric part k,, and skew-symmetric part k, ,:

gAu:hku+kku (2)

Here the matrices (g,,) and (4,,) are assumed to be of rank n. We may
define a unique tensor A**=h"* by

th)‘”ZS;’ (3)

The tensors 4,, and h* will serve for raising and /or lowering indices of
tensors in X, in the usual manner.

In our subsequent considerations, the following densities, scalars, and
tensors are frequently used:

def def def
®=Det(g,,), ©=Det(h,,), T=Det(k,,) (4a)
def
g=6/9, k=Z/9 (4b)
d
P13 (p)k)\vd—if(pﬂ)k)\ukuv (p=1,2,...). (4¢)

The n-dimensional contravariant and covariant indicators, E“" " *» and
€4, - a, Satisty the following identities:

@

E o =De

ap-c-ay o ay?

et =g (5)

Aa; - - @ :n—paa[.ua :012, 1 y
S[Aﬁl---é’p] p+1 [B],‘;p] (p 5 dy &y n ) ()

Eal.-~apa1,+1'~.¢xneﬁl“‘Bpap'H._.an:p!(n_p)!afl;l‘::ﬂp (p:O’l,z’“_,n)

B}
(7)
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Using (5), (6), and (7), we may easily verify that the scalars M, and K,
defined by

def
MP_—e_Eal."ap‘xp‘?»l”.anEBl'"ﬁpBP+l"'ﬂnkaIBl .. 'ka

pohap+lﬂp+l ot h"‘mBn

(8a)

et wy a
K, = ki, ky k,xp] » (8b)

satisfy the following relations for p=0,1,2,..., n:
M,=p!(n-p)I$K, ()

- As a direct consequence of (9) and the basic polynomial of X, we have

M,=n!®, M,=n!T (10a)
K,=1, K,=k ifniseven (10b)
M,=K,=0 ifpisodd (10¢)
6= K,=3 ——nm (11)

20 L Sy ptn=p)t

3. THE TENSORS VAN AND X,"
() (s)

In this section we shall derive useful representations of two tensors Z,”
(s)
and X,’, which will be needed in our considerations of the next section.
(s)

Put
Z"(i—e;fk” Z"d:efk VE MLk G- s 12
A Ao A [ay Ka, a, N (12a)
© (s)

def
Xy Soa ey ko Bk B (s=0,1,2,...,n—1) (12b)
o BeeBAr :

Direct calculations employing the notations in (8) are shown in Table 1.
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TABLE I The Tensors Z,” and X,” fors=0,1,2,3,4
() (s)

s zy X
() (s)

0 ky 87

1 (1/2Pky —(1/2ky

2 (/30K kg + Dkey”) (/30K 85+ Pky”)

3 (/K Pk + k) —(1/4)( K, ky' + Oky")

4 (1/S)(Kaky”+ KDk + Oky) (1/5)(K 485+ K, Pk + @hey)

Theorem 3.1. The tensor Z,” may be given by

(s)
AT SR
which is equivalent to
2o s41-1 (KoC "V + K0 Dk + -+ K, Pk +K k,") (s even)
) frl (KPR + KDk + -+ KWk + K, _ Pk, ) (s odd)

(13b)

Proof. This assertion will be proved by induction on s. By virtue of (10)
and Table 1, it can be easily seen that the assertion holds for the cases
5s=0,1,2,3,4. Now, assume that (13a) is true for the case s=m—1 (<n—1),
1e.,

=1 2 (=1 K kY (13¢c)
(m“ 1)
Then, according to the above inductive hypothesis, we have

m!
v .. ap, v a . 17 Om
Tyt (k™ o K Ko e
—*_k"‘zyk[%ml Tt k}\a'nﬂkm]am
+ ... —1—kam1'k[>\a|kulaz ek, ﬂlam)’ if mis even
ZA”: m' a v « [:3 a
tm) (m+1)!( k" k[m1 ..-ka '"-i*kml k[o‘2 l"'kam ”'"k}\]”'
_k Vk[a3 .. kham—lkal]am
am"kumka‘mz - ka,,,,l]am)’ if mis odd
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1 [ m v M @ a, 17, @
= T | D Kk ke Tk Bk m]
1 [ m v v o
= (=)7K, K, +mk,, (mZ)!) ]
1 [ m—1 .
—_ 1\ v _1\m—=r (r+2)z. v
rrad (SO SCSED N G A
—_ 1 “ (__l)m_rK (r+1)k v
m+1 < mer A
r=0
which shows that (13a) holds for the case s=m. The equivalence of (13b) to
(13a) follows from (10c). [ |
Theorem 3.2. The tensor X,” may be given by
(s)
X\ = : > (=V)'K,_ k) (14a)
(s) s+1 =,

which is equivalent to

1
N s (KRN + K DkM+ o K @kM+ K i) (s even)
XY=
1 ) . , )
(s) p (KO(S)k A+K2(s DA ... +Ks_3(3)k /\_f_KSAlk )\) (S Odd)

(14b)

Av . . . .
The tensor X is symmetric (skew symmetric) if s is even (odd).
)

Proof. By using (12a), (12b), (8b), and (13c), the assertion (14a) may be
proved as in the following way:

s!
V= oy ag §Y — 1) S 10§ Bi... Bs
5 (s+1)![8[l;:"'li:}6>‘+( DRIy e 831]"&1’ Ko,

1 v s v 2 -1 m
= o [ K+ (= 1) skyp, kg P2 kg Ptk ]
= L K3"+(‘-1)Ss A

sH1|[ 7 (s_?)
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1 e r+1 ,
= s+1 KSS)\ + 2 (—1) Ks~r—1( +l)k}\”
r=0
_ 1 > (—1)K,_ Ok
s+1 =0 s=r T

(14b) follows from (14a) by virtue of (10¢). The last statement follows from
the fact that the tensor ‘Pk* is symmetric (skew symmetric) if g is even
(odd). |

Note: As defined in (12a) and (12b), it should be noted that the
integers s in the above two theorems take the values 0,1,...,a—1.

4. THE TENSOR *g" IN X,

In this section we derive useful representations of the unified field
tensor *g*” in X, uniquely defined by

8 =g g =8 (15a)
which is equivalent to
dln &
= ——— 15b
8= e (15b)

The tensor *g*” may also be decomposed into its symmetric part *A"
and skew-symmetric part *k*”:

*g)\v:*kkv_{_*k}w (16)

Agreement 4.1. In our further considerations, we assume that the values
of p are even integers from 0 to n.

Theorem 4.2. We have

M

P=(p+D!(n—p)o X 17a
o, (pt1)!(n—p) X (17a)
oM

—2 — W (n—p)! vA
o, prinp)ie XY (17b)
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Proof. Using (8a), (5), (7), and (12b), we may derive (17a) as in the
following way:

oM
p— ‘x"'txll-A ot n—” - .« .
ah)\y —(n—p)E ! ‘ Eﬁl P k"lﬂl k“pﬁph“pHBPH ha"“B"*‘
:(n_p)'@Eul o anil}\em cBpay e a,,fllikalﬁl T kapﬁphy#
_ _ ap- e A Bi... B,
=(n p)!(p+1)!5;“)8[/;14”Bpp“]kml Ve kg P
=(n—p)(p+1)!1% X
»)
(17b) may be obtained similarly. |

Remark 4.3. 1t should be remarked that (17a) and (17b) are general
results in X, with the following agreements:

XM= xV=0 (18)
(my (=D

Now, we are ready to derive the following representations of the tensor
*gM in terms of g,

Theorem 4.4. The tensors *h*” and *k™” satisfy the following equa-

tions:
Av 1 = A
== (p+1) X’ (19a)
gp=0 (p)
l n
*]M=— 3 p X (20a)
g p=2 (p—1

These equations are, respectively, equivalent to

n—1
s 1 S (Ko Pk 4K P kM
g 2
+K, ,PkN+K, ) (19b)
*khzé é (KO(P‘I)k}‘”+K2(P‘3)k>"’+ -
p=2

+K, OkM+K, ,kV) (20b)
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TABLE II The Tensors *4* and *k* in X, for n=2,3, and 4

n *h)w *k)\v

2 (1/g)n™ (1/g)k™

3 BN+ (1/g)PkM (/)™

4 /D1 +2K)YRM + DpM (/D1 +2K Y™ + Oprry

def
(@k= — Dk

Proof. (15Vb) is equivalent to

1 0@
¥LAY ko [Ar] — = =
k g & 9%, (21)

1 9%

* AV — ko (Av) —
W= S oy

Substituting (11) and (17a) and (17b) into (21) successively and rearranging
the range of the summations in view of (18) and Agreement 4.1, we have
(19a) and (20a). The useful expressions (19b) and (20b) may be obtained by
substituting suitable representation of X,”, given in (14b), into (19a) and

(s)
(20a), respectively. ]

As useful results of Theorem 4.4, we show in Table II the representa-
tions of the tensor *g” for the lower-dimensional cases n=2,3,4.

Remark 4.5. The expressions given in the Table II are, respectively,
coincident with Chung’s results for the case n=2,3 (Chung, 1979). The
expression for *4** given in the table is also coincident with Hlavaty’s result
[(3.9a), Hlavaty, 1957, p. 8] for the case n=4.

Remark 4.6. 1t should be noted that the four-dimensional representa-
tion for *k” obtained in the present paper is more refined and useful than
Hlavaty’s result [(3.9b), Hlavaty, 1957, p. 8]

1 K v dif WiAY
*k“:@(@k“+ SEESNE,, ) (K— sgn E© kwk,\,) (22)
The coincidence of (22) with our result in Table II for n=4 follows from
K w, v —_ v 1 4
FVEE#Nk,, =9 QKK +OkV)

which may be verified by using (2.10) (Hlavaty, 1957, pp. 6), (5), (7), and
(4c). ‘
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