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For the first time Hlavaty represented the tensor .gay, defined by (15a), in terms 
of the unified field tensor gx~ in the space-time X 4. Recently, the representations 
of .gXv in terms of gxu in two- and three-dimensional generalized Riemannian 
space were obtained by Chung. The purpose of the present paper is to obtain the 
generalized representations of .gay in terms of gx.  in a generalized n-dimensional 
Riemannian space X n. 

1. INTRODUCTION 

The tensor ,gX~ defined by (15) is very useful, particularly for the study 
of Einstein's unified field theory to physical applications. For the first time 
Hlavat2~ represented the tensor ,gay, defined by (15a), in terms of the 
unified field tensor gx, in the space-time X 4 (Hlavat~r 1957). The represen- 
tations of ,gX, in terms of gx, in two- and three-dimensional generalized 
Riemannian space were obtained recently by Chung (1979). The purpose of 
the present paper is to obtain the generalized representations of ,gX~ in 
terms of gM in a generalized n-dimensional Riemannian space X n. The 
obtained results and discussions in the present paper will be useful for the 
n-dimensional considerations of *gX'-unified field theory. 

2. PRELIMINARY RESULTS 

This section is a collection of notations and basic results which will be 
needed in our subsequent considerations. The detailed proofs are given in 
Chung (1975). 
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In the usual Einstein's n-dimensional unified field theory, the gener- 
alized n-dimensional Riemannian space Xn refers to a real coordinate 
transformation x x__, yx, for which 

Det( ~-~ ) va0 (1) 

and is endowed with a real nonsymmetric tensor gx. which may be split into 
its symmetric part hx, and skew-symmetric part kx,: 

g x ~ , = h x . + k x ~ ,  (2) 

Here the matrices (gx.) and (ha.) are assumed to be of rank n. We may 
define a unique tensor h x" =h  ~x by 

h x ~ h  - - ~  (3) 

The tensors hx~ and h x~ will serve for raising and/or  lowering indices of 
tensors in X n in the usual manner. 

In our subsequent considerations, the following densities, scalars, and 
tensors are frequently used: 

def def def 
~ =  Det(gx~), ~ =  De t (h~) ,  % =  Det(kx~ ) (4a) 

def def 
g = |  k = %/~  (4b) 

e a  I 

def (~ = ~ ,  (P)kx~de-f (P-1)kx~'k~ ~ ( p =  1,2,... ). (4c) 

The n-dimensional contravariant and covariant indicators, E ~ ,  ~o and 
�9 ~, satisfy the following identities: 

Eo, 1 . . . .  = g O % ,  . . . . .  , gOe ' ~ ' " ' = E ' ~ ' ' ' ~ ' ~  (5) 

~x,,,-.-% -n-~'P'8>,--"~Ap~-, tr ~ ( p = O , l , g , . . . , n - - 1 )  (6) 
[X,~I " ' �9 Op] 

"'%#p+' . . . . .  e = p ! ( n - - p ) ! 8  '~, . . . .  ,, (p=0 ,1 ,2 ,  n) 
f l l  " " " f l p % + l  " �9 " a ~  [ i l l  " " t i p ]  " ' "  

(7) 
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Using (5), (6), and (7), we m a y  easily verify that  the scalars M p  and K p ,  

defined by  

def 
M p  = E ~ ,  ' " %%+I ' " ~ . E r  " . ~,B~+~ . . r  �9  �9 k % r  h %+l~,+ 1 . .  �9 h ~~ 

(8a) 
def 
= ,~, -2 . . . .  (8b) K v k[~., k~.~ k % ]  

satisfy the following relat ions for  p = O, 1,2 . . . . .  n: 

As a direct consequence of (9) and the basic po lynomia l  of  X. ,  we have 

Mo=n!~, 

K o =  1, K . = k  

Mp:/q:O 

(9) 

i , = n ! ~  (lOa) 

if n is even ( lOb) 

i f p  is odd (lOc) 

|169 Kp== p=O P!(n-p)!MP (11) 

3. T H E  T E N S O R S  Z x  ~ A N D  Xx ~ 
(s) (s) 

and 

In  this section we shah derive useful representat ions  of two tensors Zx" 
(s) 

X~ ", which will be  needed in our  considerat ions of  the next  section. 
(s) 
Put  

def def 
= - " ~ ' - . . k  ~s- 'k  ~s, (12a) Zx ~ kx ~, Zx ~ - k[~, k.2 ~s xl 

(0) (s) 

def 
Xx ~ = 8 ~l"' '~s~ k ~i [Pa---a,x] '~ �9 �9 �9 k ~ f ' ,  
(s) 

( s = O ,  1 , 2 , . . . , n - 1 )  (12b) 

Direc t  calculat ions employing the nota t ions  in (8) are shown in Table  I. 
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TABLE I. TheTensors Zx ~ and Xa ~ fors=0,1 ,2 ,3 ,4  
(s) (s) 

s Zx ~ Xx ~ 
(s) (s) 

0 kx" 8~ 

] (1/2)(2)kx ~ - ( 1 / 2 )  k~," 

2 (l/3)(K2kx~+ (3)kx~) (1/3)(K28~,+ (2)kxV) 

3 (1/4)(K(2)kA v+ (4)kx ") - (1/4)(K 2 kx ~ + (3)kx v) 

4 (1/5)(K4kx~'+K2(3)kx~'+(5)kx v) (l/5)(K4~[+K2(2)kx~'+(4)kx ~') 

Z ~  v ~ , 

{m) 

Theorem 3.1. The tensor Zx ~ may be given by 
(s) 

_ 1 s 

Zx" s + l  E (--1)~-'K,-r(r+Okx ~ (13a) 
(s) r=O 

which is equivalent to 

(s)ZhV = t s ~  ( g~ l'khv-F g2(s-1)kxV-t- " " Ks- 2(3)kx~'-F KskxV ) (S even) 

s-~(Ko(S+OkxV+K2(S-1)kx~+ Ks_3(g)kx~+Ks_l(2)kx ~) (s odd) 

(13b) 

Proof. This assertion will be proved by induction on s. By virtue of (10) 
and Table I, it can be easily seen that the assertion holds for the cases 
s=0 ,  1,2,3,4. Now, assume that (13a) is true for the case s = m -  1 ( < n -  1), 
i.e., 

1 m--I m--l--r 
z f  = -  E ( -1)  < . _ , _ / ' + % ~  (13c) 

m (m-- l )  r=O 

Then, according to the above inductive hypothesis, we have 

m! 
1)! (kx'k[,~, . . . . .  k~,,.l'~-+k,~k[~,", . . .  k,~m'~,.-,kx( '~ (m+ 

+k~fki~ 3 . . . . .  kx% 'k~l ~m 
v OL 1 6 2 O~ m + " "  +k,mkIx  k~l ""k~m ~1 )'  i f m i s e v e n  

m! ( k x k[~, k~l  +ks ,  k[, 2 k~ m kx] ( m + n , ~  . . . . . . .  6o ~ 6, . . . . . .  oo 
\ - ] -  

- k afk[a3'~, . . . kx  %-~kal] "m 
OL I OL 2 O~ m + . . . + k ~ k t x  k~, - ' - k  . . . .  iI ) '  i f m i s o d d  



n-Dimensional Representations of the Unified Field Tensor ,gX~ 743 

l f ( _ _  /YI // P ~1 �9 �9 �9 - [ 1) Kink x +mk~, k[~2 k ~ '~ ~] m + l  ~ '~xl ] 

m+lm[" ] -- (-- 1)'~K~k x" + mk , [  Zx ~' 
(m--l) 

,[ - 1) Kink x + m + l  ( -  " 
m--1 - r  K (r + 2)1~ v] 
~] ( - 1 )  ~ - '  m- l - - ,  ~X] 

r=O 

_ 1 ~ (_ l )m-~K~ /r+,)k ~ 
m + l  r=O 

which shows that (13a) holds for the case s=m.  The equivalence of (13b) to 
(13a) follows from (10c). �9 

Theorem 3.2. The tensor Xx" may be given by 
(s) 

1 ~ ( _ _ l ) r g s _ r ( r ) k x U  (14a) Xx~ - s + l  
(s) r 0 

which is equivalent to 

X x ,=  [ s+ll  (Ko(s/k x~ + K2 (s: 2)kX: + " "  + K s_ 2(2)k x, + Ksh x") (s even) 

(s) s--~(Ko(S)k~X+K2(S-2)kVX+ "' '  +Ks_3(3)k~X+Ks_lkUX) (s odd) 

(14b) 

The tensor X x~ is symmetric (skew symmetric) if s is even (odd). 
(s) 

Proof By using (12a), (12b), (8b), and (13c), the assertion (14a) may be 
proved as in the following way: 

[ ~1 " " " ~s v s ! 8[~ ' r fix + (-- 1)SsS~}~s . . . . . .  x~ ] v B, Xx~ ( s + l ) '  ' , �9 ".BmX] ~'B~]'~a~ " " k a ,  #s 
(s) 

-- l [gss~- t - ( -1) ' sk[BfkB3~2. . .kBma~ I k ~  ]~m] 
s + l  

1 [K~8~,+(-1)~s Zx~] 
s + l  (s-O 
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1 
s + l  

s-l 1)r+~Ks-r-(r+l)kx~ ] K : :  + E (-- 
r=O 

- s+ll ~o(-1)rKs-r(r)k~V: 

(14b) follows from (14a) by virtue of (10c). The last statement follows from 
the fact that the tensor (q)k •v is symmetric (skew symmetric) if q is even 
(odd). �9 

Note: As defined in (12a) and (12b), it should be noted that the 
integers s in the above two theorems take the values 0, 1 . . . .  , n -  1. 

4. THE TENSOR ,gX. IN X# 

In this section we derive useful representations of the unified field 
tensor ,gX, in X,, uniquely defined by 

(15a) 

which is equivalent to 

,gX~_ ~ In 
Og , (15b) 

The tensor ,gX~ may also be decomposed into its symmetric part *h x~ 
and skew-symmetric part *kX": 

,gX~=,hX~+,kX. (16) 

Agreement 4.1. In our further considerations, we assume that the values 
of p are even integers from 0 to n. 

Theorem 4.2. We have 

OMp X ~ 
Ohm, - (P+  (17a) 

OMp X ~h 
Okx. - pp ! (n-p)!~  (p-1) (17b) 
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Proof Using (Sa), (5), (7), and (12b), we may derive (17a) as in the 
following way: 

~Mp:(n--p)E~'"~"- 'XE~' #"-'"k~,~...k%,h%+,a,+ ...h~~ ' 
3hx~ 

= ( n - p ) ~ E ~ , ~ .  ,Xea~...a~%+,...~. ,~k~,/~' "" k%a~h ~ 

= ( n - p ) ! ( p +  1)!,~6~, ~ . . . .  ~x k~/~,...k%~,h~ 
B~ " �9 �9 BpU] 

= ( n - p ) ! ( p +  l)!g) X "x 
(p) 

(17b) may be obtained similarly. �9 

Remark 4.3. It should be remarked that (17a) and (17b) are general 
results in Xn, with the following agreements: 

X x~ = X x~ =0  (18) 
(n) (-1) 

Now, we are ready to derive the following representations of the tensor 
,gX, in terms of gx,. 

Theorem 4.4. The tensors *h x~ and *k x" satisfy the following equa- 
tions: 

,hX,, - 1 n--I 
- -  ~] ( p + l ) X  "x (19a) 

g p=0 (P) 

,kX. ___1 ~] p X ~x (20a) 
g p=2 (p--l)  

These equations are, respectively, equivalent to 

n--1 
*hX": 1 ~] (Ko(P)kX~+K2 (p 2)kX"+. . .  

gp=0  

+K _2 2 k  +Kph (19b) 

g p = 2  

-+- K p _  4(3)kX~" q- K p _  2 k x ' )  (20b) 
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TABLE II. The Tensors *h x~ and *k x" in X, for n=2,3, and 4 

n *h xp *k x~ 

2 (1/g)h x~ ( l /g)k  x" 

3 hX~+(1/g)(Z)k x~ ( l /g)k  x~ 

4 (l/g)[(l+2K)hX~+(a)k x"] (l/g)[(l+2K)kX~+(3)k x"] 

def 
(4k = - (~k2) 

Proof (15b) is equivalent to 

,hX~=,g(X~) = 1 O| ,kX~=,gtX~l = 1 0(~ (21) 

Substituting (11) and (17a) and (17b) into (21) successively and rearranging 
the range of the summations in view of (18) and Agreement 4.1, we have 
(19a) and (20a). The useful expressions (19b) and (20b) may be obtained by 
substituting suitable representation of Xx ~ , given in (14b), into (19a) and 

(s) 
(20a), respectively. [] 

As useful results of Theorem 4.4, we show in Table II the representa- 
tions of the tensor .gX, for the lower-dimensional cases n = 2, 3, 4. 

Remark  4.5. The expressions given in the Table II are, respectively, 
coincident with Chung's results for the case n=2 ,3  (Chung, 1979). The 
expression for *h x" given in the table is also coincident with Hlavat2?'s result 
[(3.9a), Hlavat~, 1957, p. 8] for the case n=4.  

Remark  4.6. It should be noted that the four-dimensional representa- 
tion for *k x" obtained in the present paper is more refined and useful than 
Hlavat~c's result [(3.9b), Hlavat~, 1957, p. 8]: 

-- @ ,  ~V ~ ~o,~) (~d--efsg n ~'~X~) (22) 

The coincidence of (22) with our result in Table II for n = 4 follows from 

which may be verified by using (2.10) (Hlavat~, 1957, pp. 6), (5), (7), and 
(4c). 
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